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Abstract

Acyclicity is an important property of hypergraphs which has applications in many areas such
as graphical models and relational databases. Our contributions in this paper are two-fold: First, we
present two new characterizations of a hyperforest (equivalently, acyclic hypergraph or triangulated
graph) through a hierarchical decomposition of the hyperforest and through the lack of hypercycles,
a concept defined in this paper. Second, we present the first efficient dynamic data structure for
maintaining acyclicity in a hypergraph. The data structure uses as a building block Tarjan’s Union-
Find data structure (which can be used to maintain acyclicity in graphs) to achieve an amortized
expected query time that has an inverse Ackermann dependence on the number of vertices. To
demonstrate the practicality of this data structure, we conduct experiments using our data structure
to construct high-weight hyperforests.

1 Introduction

Acyclic hypergraphs, or hyperforests (Figure 1 shows several examples), are a natural generalization
of forests. They have been independently and equivalently defined in many different domains and are
also studied as triangulated graphs (hyperforests are hypergraphs formed by the cliques of triangulated
graphs). Hyperforests are useful in many domains where higher-order relations are to be captured but
certain tree-like “acyclic” properties are also desired.

(b) a 2-hyperforest(a) a 1-hyperforest (c) a 3-hyperforest (d) a 9-hyperforest

Figure 1: Examples of hyperforests of various tree-widths.

The acyclicity provided by hyperforests allows many calculations to be carried out efficiently using
dynamic programming. Such calculations include a broad class of combinatorial problems [Cou90] as
well as inference in graphical models [Bes74]. In these applications, while the computation is often
exponential in the tree-width of the hyperforest (which corresponds to the maximum size of the hyper-
edges, or cliques in a triangulated graph), it is polynomial (often only linear) in the number of vertices
the hyperforest. The class of K-hyperforests (having tree-width at most K) is then of particular interest.

When choosing to use K-hyperforests for the above reasons, it is often desirable to find the best
K-hyperforest, where the quality of a hyperforest is equal to the sum of precomputed weights on its hy-
peredges. This criterion leads to the problem of finding a maximum-weight K-hyperforest [KS01]. The
special case where K = 1 is equivalent to the problem of finding a minimum spanning tree (MST). This
problem appears as constructing maximum likelihood Markov trees (Chow-Liu trees) [CL68], Hunter-
Worsley trees for Bonferroni inequalities [Wor82], and trees used to ensure efficient combinatorial op-
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timization (e.g. [Mat99]). Generalizations to higher tree-width hyperforests are possible, desirable, and
have recently been investigated [Mal91, Sre01, BP01, Tom86].

Unfortunately, when K > 1, finding the maximum weight K-hyperforest is NP-complete and find-
ing good approximation algorithms remains an open problem [Sre00]. A common heuristic is a Prim-
like greedy approach, in which hyperedges containing a single new vertex are incrementally added to
a fully-connected hypertree [Mal91, BP01, BJ02]. Alternatively, one might consider a more flexible
and possibly more powerful Kruskal-like greedy approach, in which hyperedges are added to a possi-
bly unconnected K-hyperforest. In order to do so, it is necessary to ensure that a candidate hyperedge
would not break the acyclicity of the existing hyperforest. A particular situation where the Kruskal-like
approach is necessary is when we would like to greedily augment an initial, possibly unconnected, hy-
perforest which is required or strongly desired in our final hyperforest. For example, we may want to
augment a high-weight substructure found by global search techniques (it is possible to efficiently find
hyperforests containing at least a constant fraction of the optimal weight [KS01]).

Also in other situations, one might wish to add hyperedges to a hyperforest, ensuring that acyclicity is
maintained. For example, acyclicity is important in precluding possible conflicts in relational databases
[BFMY83] and one might want to ensure that adding new relations to an existing database scheme
maintains acyclicity.

When augmenting forests, Tarjan’s Union-Find dynamic data structure can be used to efficiently
check if a candidate edge would break the acyclicity by keeping track of the connected components in
the graph. The main result in this paper is a dynamic data structure for hyperforests that serves a purpose
analogous to Tarjan’s Union-Find structure for forests: for any candidate hyperedge, the data structure
can verify that adding the hyperedge will not break the acyclicity of the hyperforest.

Another product of this paper is the study acyclicity in hypergraphs. We show that in hypergraphs, it
is no longer enough to consider incidence or reachability between two hyperedges as binary properties as
it is in graphs. Instead, we present a novel hierarchical view of hyperforests, where each level captures a
different extent of reachability. Although acyclic hypergraphs have been studied for three decades using
many equivalent characterizations, we are not aware of any definitions of a hypercycle, a certificate that
a hypergraph is not acyclic; this paper provides such a concept. These two characterizations provide
deeper insight into the nature of acyclicity and help us in constructing and proving correctness of the
data structure we present.

The rest of this paper is organized as follows: in Section 2 we define hyperforests and specify the
desired data structure. In Section 3 we provide two new characterizations of acyclicity based on a hierar-
chical decomposition of a hyperforest and on the absence of hypercycles. After laying the foundations of
acyclicity, we present the data structure in Section 4. Finally, in Section 5 we give experimental results
on using the data structure in a Kruskal-like approach to find high-weight hypertrees, evaluating both
the efficiency of the algorithm and quality of its solutions.

2 Hypergraphs and acyclicity

Preliminaries A hypergraph H over a set of vertices V is a collection of hyperedges, where each
hyperedge is a subset of V . In particular, a k-hyperedge is a set of k+1 vertices, and a k-hypergraph is
one in which each of its hyperedges contains at most k+1 vertices. We call k the order of the hypergraph.
Note that standard (undirected) graphs are 1-hypergraphs, where each edge is a 1-hyperedge containing
2 vertices.

A hyperedge h1 can be a superset of another hyperedge h2; in this case, we say that h1 covers h2.
A maximal hyperedge in a hypergraph is one that is only covered by itself. In this paper, we consider
two hypergraphs to be equivalent if they have the same set of maximal hyperedges (or equivalently,
same set of covered hyperedges). One can think of the hypergraph implicitly containing all its covered
hyperedges. However, in this paper, when we refer to the hyperedges of a hypergraph, we are talking
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about only the maximal hyperedges. Covering also applies to entire hypergraphs: a hypergraph H1

covers a hypergraph H2 if each hyperedge in H2 is covered by some hyperedge in H1.
We now define the property of a hypergraph that is central to this paper: (hyper)acyclicity. There are

several equivalent definitions of hypergraph acyclicity in common use (see [Sre00] for a review). Here,
we define it using the classic notion of a tree structure (essentially the same as tree decomposition,
junction tree, join tree, etc.). In Section 3, we introduce two new definitions of acyclicity which will
lead up to the analysis of our data structure.

Definition 1 (Tree structure of a hyperforest). A hypergraph H has a tree structure T (H) if and only
if T is a tree whose vertices are the hyperedges in H , and the following running intersection property
holds: if h1, h2, . . . , hm is a path of hyperedges in T , then h1 ∩ hm is covered by every hyperedge hi on
the path. A hypergraph with a tree structure is said to be acyclic and is referred to as a hyperforest.

For example, the tree structure of a standard tree T (k = 1) is a tree whose nodes are the edges of T
and edges are nodes of T with degree at least 2.

Definition 2 (Tree-width). The tree-width of a hyperforest H is the order of H (the size of the largest
hyperedge in H minus 1). The tree-width of a general hypergraph H is the minimum tree-width of a
hyperforest that covers H .

As mentioned in the introduction, tree-width and (hyper)acyclicity can be equivalently studied by
considering cliques in standard graphs. For any graph, consider its clique-hypergraph: a hypergraph
whose hyperedges are the cliques of the original graph. A hypergraph is acyclic if and only if it is
a clique-hypergraph of a triangulated graph. The tree-width of a hypergraph is the same as the tree-
width of the corresponding graph, which is one less than the the maximum clique size of an optimal
triangulation of the graph.

Data structure specifications This paper presents the first dynamic data structure that allows one to
augment an existing hyperforest by adding hyperedges to it, while checking that it remains acyclic.
Specifically, the data structure should keep track of the “current” hyperforest H and support the follow-
ing two operations:

QUERY(hnew): returns TRUE iff H ∪ {hnew} is acyclic.
INSERT(hnew): augments H ← H ∪ {hnew}, assuming that the resulting H is acyclic.

A technical detail is that the data structure should allow for adding hyperedges that cover previously
added hyperedges. Any covered hyperedges should simply be subsumed by the new hyperedge.

Alternative goal: low tree-width Unlike forests, hyperforests do not form a monotone family of
hypergraphs: removing hyperedges from an acyclic hypergraph might make it cyclic, and conversely,
adding hyperedges to a cyclic hypergraph might make it acyclic (see Figure 2).

A

B C

A

D
B C

(a) (b)

Figure 2: An example illustrating the non-monotonicity of acyclicity in hypergraphs. (a) is not acyclic,
but adding the 2-hyperedge D to (a) results in (b), which is acyclic.

If we would like to do efficient computations on a cyclic hypergraph, it is often admissible to add
extra hyperedges to a hypergraph to obtain a covering hyperforest (equivalent to triangulating the corre-
sponding graph). We can then perform dynamic programming over the tree structure of that hyperforest.
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In such a situation, we might want data structure that checks whether adding a hyperedge maintains
a hypergraph of tree-width at most k rather than our data structure, which strictly maintains acyclicity.
Our data structure imposes stronger constraints: if all hyperedges added to our data structure are of order
at most k, then the tree-width of the resulting hyperforest will be at most k. However, the converse is
not true: our data structure might reject a hyperedge hnew even though adding it maintains tree-width k.
For example, in Figure 2, if our current hyperforest was {A,B}, our data structure would reject C , even
though the tree-width of {A,B,C} is 2. We would have to add D first before adding C .

Before considering dynamic data structures for maintaining low tree-width, it is important to remem-
ber that even computing the tree-width of a graph statically, or equivalently finding a narrow triangula-
tion, is by itself a very difficult task. Although linear time algorithms for constant tree-width have been
proposed [Bod96], the dependence on the tree-width is extremely prohibitive and these algorithms are
not usable in practice. Instead, various heuristics, approximation algorithms, and super-polynomial-time
algorithms are used [SG97].

3 A new look at hyperforests

Thus far, we have defined acyclicity in terms of the existence of a tree structure over the hyperedges.
There are two missing aspects of this definition that we will remedy in this section. First, a given
hyperforest may have many different tree structures, which makes talking about a concrete structure
difficult. Section 3.1 addresses this issue by defining a single hierarchical structure for any hyperforest.
Second, cyclicity is currently defined through the absence of a tree structure. Section 3.2 defines the
new concept of a hypercycle, which generalizes cycles in graphs and provides a certificate of cyclicity
in hypergraph. These two equivalent definitions of acyclicity provide additional insight into the precise
nature of hyperforests. In Section 4, these concepts will be instrumental in the analysis of our data
structure.

3.1 Hierachical structure of a hyperforests

The interaction between two hyperedges in a hypergraph is substantially more complex than the inter-
action between two edges in a standard graph. This complication is what makes hyperacyclicity a more
elusive concept to analyze. In a graph, two edges are either incident or disjoint. In a k-hypergraph, there
are k+1 extents to which two hyperedges can overlap, corresponding to overlap sizes ranging from 0
to k. In this section, a hierarchical decomposition of a hypergraph into superedges will allows us to
concentrate on one extent of overlap at a time. We begin with the basic definition of a superedge, which
attempts to clump together hyperedges:

Definition 3 (Superedge). Two hyperedges h1 and hm are k-reachable if there exists a sequence of
hyperedges h1, h2, . . . , hm for which each overlap hi ∩ hi+1 is at least size k. A k−1-superedge q of
a hyperforest H is a maximal k-reachable subset of H (every pair of hyperedges in q are k-reachable
from each other, but no other hyperedges are k-reachable).

For convenience, denote the set of vertices in the union of the hyperedges in a superedge q as q̃ = ∪q.

The superedges specify a hierarchical partitioning of the hyperedges of a hypergraph: a k-superedge
consists of a set of k +1-superedges. The root of the hierarchy is the single −1-superedge, which
contains all the hyperedges. The next level in the hierarchy are the the 0-superedges, which correspond
to the connected components. At the bottom of the hierarchy, each K-superedge contains exactly one
hyperedge, where K is the maximimum order of a hyperedge. It is important to note that any hypergraph,
not only hyperforests, can be decomposed into a hierarchy of superedges.

With this hierarchical partitioning of the hyperedges, we can now look at a K-hypergraph one level
at a time (Figure 3 shows an example 3-hyperforest). At level k, we focus on a single k−1-superedge

4



www.manaraa.com

p and the k-superedges inside p. Within p, < k-reachability does not exist because all hyperedges
are k-reachable (at least), and > k-reachability has been abstracted into the individual k-superedges,
so we mainly concern ourselves with k-reachability. We can think of the k-superedges as fancier k-
hyperedges. In a way, a k-superedge q “functions” as a k-hyperedge because all overlaps between q and
other k-superedges have size at most k. Even though we have tried to focus on only k-reachability, the
overlap between two superedges can still be complicated and requires some attention:

Definition 4 (Simple overlap of superedges). The overlap between two superedges q1 and q2 of H is
s = q̃1 ∩ q̃2. q1 and q2 are said to overlap simply if s is the intersection of some h1 ∈ q1 and h2 ∈ q2.

Acyclicity and incidence graph structures We now have the necessary tools to properly define the
unique structure corresponding to a hypergraph that we will analyze to determine acyclicity:

Definition 5 (Incidence graph structure). The incidence graph structure of a k−1-superedge con-
taining a set of k-superedges is a bipartite graph whose left vertex set consists of the k-superedges and
the right vertex set consists of all maximal overlaps between any two superedges. An edge connects a
k-superedge q with an overlap s if s ⊂ q̃.

A hypergraph has an incidence graph structure for each superedge of the hypergraph. Figure 3 shows
the incidence graph structures for an example hypergraph.
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Figure 3: An example of how the 3-hypergraph in (a) (which happens to be acyclic) can be viewed in
terms of its superedges and incidence graph structure (b).

We next show what acyclicity means in terms of these structures. But first, a lemma will reveal the
relation between a tree structure of a hyperforest and the superedges of the hyperforest.

Lemma 6 (Superedges and tree structures). The hyperedges in any superedge of a hyperforest H
correspond to a contiguous subtree of nodes in any tree structure of H .

Proof. Let T be any tree structure of a hyperforest H , and q be any k−1-superedge for any k. Consider
the path in T between any two hyperedges h1, h2 ∈ q. The overlap s between any two successive
hyperedges on this path separates h1 and h2, and since any two hyperedges in q are k-reachable, s must
have size at least k. Therefore, the path must contain only hyperedges from q. Put it another way, each
superedge occupies a contiguous portion of the nodes in T .

Definition 7 (Simply acyclic incidence graph structures). The incidence graph structure of a k−1-
superedge p is said to be simply acyclic if (1) each pair of k-superedges in p overlap simply, (2) the
incidence graph is acylic, and (3) the running intersection property holds, i.e. the overlap between the
first and last k-superedges of any path of k-superedges through the incidence graph is contained in every
k-superedge on the path.
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This definition is similar to that of tree structures, but has the important distinction of being a prop-
erty of the unique incidence graph structure, which always exists. Contrast this with tree structures,
where for a given hypergraph, there could be 0, 1, or many.

Theorem 8. A hypergraph is acyclic if and only if the incidence graph structure of every superedge is
simply acylic.

Proof.
=⇒: We will show that if a hypergraph H is acyclic, and thus has a tree structure T , then the

incidence graph structure of each of its superedges is simply acyclic. Let p be a k−1-superedge.

1. By Lemma 6, for any pair of k-superedges q1, q2 in p, there exists a unique pair of hyperedges
h1 ∈ q1 and h2 ∈ q2 which are closest to each other in T . Furthermore, every path between a
hyperedge in q1 and a hyperedge in q2 must go through both h1 and h2. By the running intersection
property of Definition 1, it follows that h1 ∩ h2 = q̃1 ∩ q̃2. Thus, all overlaps between two k-
superedges are simple.

2. We now show that the incidence graph structure is acyclic. Since superedges occupy contiguous
portions of T , clumping together hyperedges belonging to the same superedge results in a tree
structure Tp over k-superedges (T is a minor of the graph Tp). Note that the edges of Tp corre-
spond to the overlaps (which we have shown to be simple) between k-superedges. The running
intersection property guarantees that all maximal overlaps between superedges are represented by
one of these edges, and that edges corresponding to the same overlap will exist in a contiguous
subtree of Tp. Thus, we can convert Tp into the unique incidence graph structure of p as follows
(Figure 4(b) to (c)): For each maximal overlap s, let Qs be the set of k-superedge nodes that
contain s. The set Qs contains exactly the k-superedge nodes incident on some edge correspond-
ing to s. Connect each k-superedge node in Qs to a new overlap node corresponding to s, and
disconnect the k-superedge nodes from each other. By construction, this graph is acyclic.

3. The running intersection property holds due to the same property holding in T .

(b) tree structure
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Figure 4: An example of the tree structure (b) and graph incidence structure (c) of a hyperforest (a).

⇐=: We will inductively construct a tree structure T from a simply acylic incidence graph structure.
Having constructed a tree structure for each k-superedge, let us now construct a tree structure for the k−1-
superedges, essentially reversing the process from the first half of the proof. Let p be a k−1-superedge.
For each overlap s in the incidence graph structure, let q1, . . . , qm be the superedges adjacent to s. Since
all overlaps are simple, we can find hyperedges h1, . . . , hm from the corresponding superedges that
each contain s. Arbitrarily join these hyperedges with any spanning tree. If this process is done for each
overlap s, the resulting structure will indeed by acyclic. The running intersection property follows from
the same property holding for the incidence graph structure on p.

3.2 Hypercycles

While a tree structure is a certificate that proves the acyclicity of a hypergraph, we know of no previous
work describing a certificate for cyclicity. In this section, we introduce such a certificate, a hypercycle,
which generalizes naturally from a cycle of a graph.
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To appreciate the intricacies involved of such a definition, here is a reasonable but failed attempt
to define a hypercycle in terms of hyperedges: a hypercycle is a sequence of maximal hyperedges
h1, . . . , hm with distinct overlaps between successive hyperedges (including h1 ∩ hm). Maximality is
required to exclude hypercycles which are covered by some other hyperedge (thus eliminating cyclicity).
Distinctness is required to exclude classifying the edges in a star graph as a hypercycle. But still, A-B-
C in Figure 2(b) would be classified as a hypercycle under this definition, but clearly, that hypergraph
is acyclic. The problem lies in the fact that larger overlaps sometimes invalidate a view consisting of
smaller overlaps which may suggest cyclicity. The solution we propose is based on superedges rather
than hyperedges.

Definition 9 (Hypercycle). A k-hypercycle is one of the following:

1. k-hyperdoublet: Two k-superedges that overlap non-simply.
2. Regular k-hypercycle: A sequence of at least 3 distinct k-superedges q1, q2, . . . , qm with distinct

overlaps s1, . . . , sm of size exactly k, where si = q̃i ∩ q̃i+1 for 1 ≤ i < m and sm = q̃1 ∩ q̃m.

3. Irregular k-hypercycle: A sequence of k-superedges as defined above, except that |sm| < k but
sm is not a subset of any of the other overlaps.

Hypercycles as we have defined them only correspond to the analogue of simple cycles: there are no
overlap repetitions allowed. A regular 1-hypercycle is exactly a simple cycle: overlaps between edges
of the cycle are the distinct vertices along it, while the overlap sm is the vertex between the first and last
edges (first example in Figure 5a). Regular hypercycles are straightforward generalizations of cycles.
But two other types of k-hypercycles manifest themselves with larger k due to the complex interaction
of hyperedges, even when we have tried to partition hyperedges nicely into superedges. A hyperdoublet
is analogous to two nodes connected by two distinct edges in a multigraph. An irregular hypercycle can
be thought of as a self-loop.
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Figure 5: Examples of hypercycles.

Theorem 10. A hypergraph H is acyclic if and only if H contains no hypercycles.

Proof. First, note that if a k-hypercycle exists, then one must exist in a k−1-superedge. Hyperdoublets
correspond to non-simply overlapping superedges. The overlaps in a regular hypercycle are of size k
and hence are maximal, so a regular hypercycle corresponds to a cycle in the incidence graph structure
of the k−1-superedge. An irregular hypercycle either corresponds to a cycle if the overlap sm between
the first and last superedges is maximal. If sm is not maximal, the running intersection property is
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violated since sm is not contained in all superedges on the path q1, s1, . . . , sm−1, qm in the incidence
graph structure.

4 The data structure

Having established a powerful characterization of acyclicity in hypergraphs, we now present the main
result of this paper, the dynamic data structure that checks acyclicity.

4.1 Union-Find applied to cycle detection

Tarjan’s Union-Find data structure is used to keep track of membership in disjoint sets. It supports two
operations: querying the set of a member and uniting two sets. The amortized run-time for m operations
in O(α(m,n)) where α(·) is the sub-logarithmic inverse Ackermann function and n the number of
elements.

The data structure can be used to keep track of connected components: querying two vertices can
establish if they are in the same connected component or not, and adding an edge between connected
components unites them. These operations can be used to maintain acyclicity in standard graphs by
ensuring that the endpoints of a candidate edge are in different connected components, satisfying the
specifications in Section 2.

The Union-Find data structure maintains the simple notion reachability between nodes via edges.
But for K-hypergraphs, this is not enough; recall from Section 3.1 that there are K extents of overlap
between hyperedges, resulting in K extents of reachability. Superedges allow us to focus on one level
at a time. Putting these ideas together, we take the following approach: use the classic Union-Find
structure as a building block at each of the K levels. The Union-Find structure at level k shall keep track
of k-reachability information between k-overlaps via k-superedges.

4.2 Overview of operations and state

Notation We continue using the term k-hyperedge to mean a maximal hyperedge of size k+1and k-
overlap to mean the intersection of two (maximal) hyperedges, which has size k. Each overlap can also
be thought of as a covered non-maximal hyperedge that is associated with the two hyperedges whose
intersection is the overlap. In addition, we will now use the term k-supervertex to denote a covered
hyperedge containing k vertices. The intention is to draw an analogy between superedges connecting
supervertices and edges connecting vertices. Hyperedges, overlaps, and supervertices are all sets of
vertices—they differ only in their role in our proofs.

Data structure state We now explain how our data structure meets the specifications of Section 2. The
state representing the current K-hyperforest H consists of two parts: hash tables S1, . . . , SK mapping
supervertices to identifiers and K Union-Find structures U1, . . . , UK . Each Uk stores disjoint sets of
k-supervertex identifiers, where two k-supervertices belong to the same set if they are k-reachable.

Operations (See Figure 6 for pseudocode) Recall that QUERY(hnew) should return TRUE if and only
if H∪{hnew} is acyclic . This is done by returning FALSE when there exists some k-supervertices s and
t which are connected “outside” of hnew, so that adding hnew would close a hypercycle. The “outside”
criteria is important, since if s and t are only k-reachable “inside” hnew, hnew would coincide with the
corresponding path between s and t and fail to form a hypercycle.

To be able to test k-reachability inside hnew, upon each invocation of QUERY, we build K addi-
tional Union-Find structures Z1, . . . , ZK , local to the QUERY operation (they are created when per-
forming the operation and deleted when the operation is completed). The Union-Find structure Zk
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QUERY(hnew):

1 Z1, . . . , ZK ← ∅, . . . , ∅
2 for k ← 1 to K do
3 for s : k-supervertices of hnew do
4 if s ∈ Sk then
5 INSERT(s) using {Zk} instead of {Uk}
6 for k ← 1 to K do
7 for s, t : k-supervertices of hnew do
8 if Uk(s, t) and not Zk(s, t) then
9 return FALSE

10 return TRUE

Time: O(4K(K + α(m,n)))

INSERT(hnew):

1 assert QUERY(hnew)
2 for k ← 1 to K do
3 s← an arbitrary k-supervertex of hnew

4 for t : k-supervertex of hnew do
5 union (s, t) in Uk

6 Sk[t]← |Sk|

Time: O(2K(K + α(m,n)))

Data structure state:
Union-Find structures U1, . . . , UK

Hash tables S1, . . . , SK

Space: O(2Kn)

Figure 6: Pseudocode for QUERY and INSERT. The runtimes are for m operations on a K-hyperforest
with n vertices. QUERY: first compute {Zk}, which store reachability information for H(hnew), the
projection of H onto hnew; for each pair of k-supervertices in hnew, test whether they are k-reachable
“outside” hnew. INSERT: unite all k-supervertices of hnew (for each k) and add them to the hash tables.

stores k-reachability information of k-supervertices in the projection H(hnew) of H onto hnew (those
k-supervertices of H which are covered by hnew). It is analogous to Uk, which stores k-reachability
information of k-supervertices in the entire hypergraph H .

If QUERY(hnew) returns TRUE, we may call INSERT(hnew) to update the data structure state to
reflect H ∪ {hnew}. For each k, we update Uk by uniting all k-supervertices of hnew and add all k-
supervertices to the hash table Sk.

Complexity Both Union-Find structures and hash sets require space linear in the number of elements
in them. For a K-hyperforest with n vertices, these elements are the O(2Kn) supervertices.

The running time of m calls to INSERT is dominated by one Union operation for each of the O(2K)
supervertices of hnew. Since operations on Sk require O(k) expected time and m operations on a
Union-Find structure require O(α(m,n)) amortized time, the total running time of m INSERT calls
is O(2K(K + α(m,n))) (expected amortized).

For QUERY, computing {Zk} requires one INSERT call for each of the O(2K) k-supervertices of
hnew, yielding a total time of O(4K(K + α(m2K ,K))) time. Then, for each k and each pair of k-
supervertices (O(4K) pairs in total), we must perform two hash table lookups and two Find operations.
Thus, the total running time of m QUERY calls is O(4K(K + α(m,n))) (expected amortized).

4.3 Correctness

Theorem 11. QUERY(hnew) returns TRUE if and only if H ∪ {hnew} is acyclic, where H is the current
hyperforest represented by {Uk}.

Proof. We will show that QUERY(hnew) returns FALSE iff H ∪ {hnew} contains a hypercycle, the cer-
tificate of cyclicity that we developed in Section 3.2.

To do this, we consider the hierarchical incidence graph structure of H , which is the nested set of
incidence graphs where each superedge node contains the incidence graph of that superedge, and the
outermost incidence graph is the singleton node, the −1-superedge H; Figure 4(c) shows an example.
All of the nested incidence graph structures are simply acyclic. For the purposes of the proof, we will
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hyperedge (dotted means the new hyperedge)

superedge

supervertex (shaded means contained in new hyperedge)

s s’ t’ t

k1 = k2 = k3: regular k2-hypercycle

k1 < k2 = k3: irregular k2-hypercycle

k1 = k2 < k3: (regular) k2-hyperdoublet

k1 < k2 < k3: (irregular) k2-hyperdoublet

(a)

(b)

Figure 7: Illustration of the proof. (a) shows an example of a path through the current hyperforest H
from supervertices s to t in relation to hnew, and one possibility for s′, t′. (b) details the four different
cases, where k1, k2, k3 are the sizes of the smallest three overlaps on the path between supervertices s ′

and t′. For each case, two examples are shown. Note that all overlaps on the same level have the same
size, while the overlaps one level deeper are one size larger.

modify these incidence graphs slightly: for each k-superedge, we add all k-supervertices to the incidence
graph as overlap nodes. The resulting graph is still simply acyclic since only leaves have been added to
the incidence graph.

A hierarchical path through this hierarchical incidence graph structure is a sequence of superedges
and supervertices (Figure 7(a)). Compared with a standard path, a hierarchical path expands each k-
superedge into a nested hierarchical path between two k+1-supervertices; note that supervertices may
be adjacent in a hierarchical path. We construct such a path as follows: Consider any two distinct k-
supervertices s and t connected to the same k-superedge p. Let us focus on Tp, the incidence graph
structure of p, whose nodes are k+1-superedges and k+1-overlaps. Since Tp is simply acyclic, we can
pick any closest pair of k+1-overlaps s′ and t′ that contain s and t respectively (s′ might be the same as
t′ if it contains both s and t). After finding a path from s′ ⊃ s to t′ ⊃ t through Tp, we can recursively
find paths through each of the k+1-superedges on this path, and concatenate all the pieces to form the
final hierarchical path (Figure 7(a)).

=⇒: Assume QUERY(hnew) return false, and let s, t be the two k-supervertices that caused the test
on line 8 to fail. Consider a hierarchical path P from s to t as described above. All overlaps along this
path are of size at least k since s and t are k-reachable in H (Uk(s, t) holds). Consider a minimal length
sub-path P ′ = s′, . . . , t′ such that s′ and t′ are contained in hnew, and no overlap in P ′ is contained in
hnew. Since s and t are not k-reachable in H(hnew) (Zk(s, t) holds), such a sub-path must exist.

Consider the sizes k1 ≤ k2 ≤ k3 of the smallest three overlaps on the hierarchical path P ′. We
will now show that there is a k2-hypercycle composed of hnew and the path from s′ to t′. Intuitively,
these three overlaps determine the partitioning into k2-superedges and hence the type of hypercycle.
Superedges spanning larger overlaps will be clumped into the same k2-superedge. Figure 7(b) shows
the various cases.

Let us construct a mixed sequence hnew, s′, q1, s1, . . . , qm, t′, hnew of supervertices, superedges,
and the hyperedge hnew by traversing P ′ path from s′ to t′ as follows: start from s′; at an overlap u,
if |u| + 1 ≤ k2, step into the superedge after u, arriving in a strict superset of u; but if |u| = k2, step
over the entire superedge, arriving at another supervertex of the same size as u; repeat until we reach t ′.
Replace two adjacent overlaps with the smaller one.

We will now show that the superedges q1, . . . , qm, and perhaps also hnew, form a k2-hypercycle.
If |s′| = |t′| = k2, then the k2-hypercycle includes hnew as a seperate k2-superedge between qm and
q1. Otherwise, hnew is merged with some qi. We show two properties: First, the overlaps in this mixed
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sequence are representative of the “maximum interaction” between either hnew and a k2-superedge qi or
between two k2-superedges qi, qj , because only the overlaps s′ and t′ (and not other overlaps in P ′) are
contained in hnew, and the overlaps were representative before adding hnew. In other words, we know
that two k-superedges would end up in the same k-superedge in the new hyperforest H ∪ {hnew} iff
there is a path through >k-overlaps along the (circular) sequence. Second, because we have constructed
the hierarchical path through a k-superedge by taking the closest pair of k+1-supervertices, no overlap
in our mixed sequence is a strict subset of another overlap. From these two properties, representative
interactions and distinct overlaps, it follows that q1, . . . , qm, h form a hypercycle (see Figure 7(b) for
examples of the various types of hypercycles).
⇐=: To show the inverse, assume that QUERY(hnew) returns true, which means every hierarchical

path between any two k-supervertices s, t is entirely contained in hnew. We will now show the incidence
graph structures of H ∪{hnew} are simply acyclic. Consider all k-superedges that overlap at least kwith
hnew. Let T be the forest corresponding to the incidence graph structures over the k−1-superedges that
contain this set of k-superedges. These k-superedges in T will belong with hnew in the same k−1-
superedge p in the new incidence graph structure T ′ of p. The k-superedges in T that have >k-overlap
with hnewwill merge into the same k-superedge as hnew, and in T ′, there will be an edge between a
k-superedge and the k-superedge of hnew if the two exactly k-overlap.

We now show that this T ′ is simply acylic. To see that there are no cycles, notice that for any path of
k-superedges q1, . . . , qm in T with q1, qm k-overlapping with hnew, every k-superedge qi for 1 < i < m
is contained entirely in hnew and thus merges with hnew. The end result is that hnew will merge with
a set of connected components in T (possibly none). Thus, no cycles are created. Since all the new
incidence graph structures are simply acyclic, H ∪ {hnew} is acyclic.

5 Experiments

We consider an application of our data structure: constructing a high-weight K-hyperforest given a
weighted hypergraph. This problem is NP-hard for K > 1 [Sre00]. A common greedy heuristic for
constructing a high-weight K-hyperforest is Prim-like [Mal91]: start with the highest-weight hyperedge,
and iteratively add hyperedges, but at each iteration considering only candidate hyperedges that contain
exactly Kvertices already in the current hyperforest and one new vertex. The maximum weight such
hyperedge is added to the hyperforest. We suggest an alternative Kruskal-like greedy procedure, where
at each iteration all hyperedges preserving acyclicity are considered. This might enable us to make better
(greedy) choices, allows us to end up with a non-maximal hyperforest if some weights are negative, and
allows us to seed the greedy procedure from an arbitrary hyperforest.

We conducted experiments to demonstrate the advantage of the less-limited greedy choices of the
Kruskal-like procedure over the Prim-like procedure. We generated random weights on all candidate
2-hyperedges in a hypergraph with 100 vertices in the following way: we first constructed a random
“planted” 2-hypertree by augmenting a hyperforest randomly. Hyperedges outside the planted hyper-
tree were assigned a random weight uniformly distributed between 0 and 1. In one set of experiments,
weights inside the hypertree were assigned random weights uniformly distributed between 0 and 10. In
the second set, the weights were chosen uniformly between 0 and 1 with probability 1/2, and between
0 and 20 with probability 1/2. We generated 10 random weight-sets of each type, and tried both greedy
approaches on each graph. Table 1 summarizes the weights of the resulting hypertrees. Kruskal per-
formed significantly better on both sets of experiments, and especially when the weight was less evenly
distributed in the “planted” hypertree.

Next, we demonstrate that out proposed data structure is practical and provides a substantial speed-
up over existing methods based on Graham reductions to test for acyclicity. A Graham reduction is
found by iteratively removing a leaf vertices (vertices that are incident to only one maximal hyperedge).
For tree-widths 2 and 3, we construct a complete k-hypergraph with 25–100 vertices and uniformly
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U [0, 10] 1

2
U [0, 1] + 1

2
U [0, 20]

Planted 0.590± 0.0339 0.609± 0.059
Prim-like 0.506± 0.0816 0.323± 0.107
Kruskal-like 0.587± 0.0342 0.619± 0.058

Table 1: Averages and standard deviations of fraction of the weight captured by the hypertrees.

K = 2, N = 25 K = 2, N = 50 K = 2, N = 100 K = 3, N = 25 K = 3, N = 50
Graham reduction 6.02s ±1.14 3.61m±0.42 2.45h±0.09 34.90s±2.86 46.62m±5.27
Data structure 2.04s ±0.33 36.27s±4.49 11.52m±0.58 21.78s±2.30 12.51m±1.58
Speedup factor 2.96± 0.36 5.98± 0.28 12.82± 1.17 1.61± 0.10 3.73± 0.08

Table 2: Averages and standard deviations over five trials of the total execution times and speedup factor
for a Kruskal-like hyperforest constructing algorithm using Graham reduction or our data structure to
check acyclicity. N is the number of vertices, and K is the tree-width. The experiments were conducted
on a 2.8 GHz P4.

random weights on all maximal and non-maxial hyperedges. Table 2 compares the running time of a
Kruskal-like procedure for computing the maximum hyperforest using both a Graham reduction and our
proposed data structure to test for acyclicity.

6 Discussion

We have presented a dynamic data structure for keeping track of acyclicity in hypergraphs and demon-
strated its utility in a possible application: a Kruskal-like greedy approach for finding maximum weight
acyclic hypergraphs. We have also developed two new ways of looking at hyperforests, via a hierarchical
decomposition into superedges and via the lack of hypercycles. Beyond their utility in our algorithms
and proofs, these new characterizations may be useful in analyzing acyclicity in other contexts.

We note that the data structure we present can easily be modified to allow hyperedge deletions
by using a variant of the Union-Find data structure that supports deletions (e.g. [Tho99], replacing
the inverse Ackerman dependence on n with a O(log n/ log log log n) dependence for queries and
O(log n(log log n)3) for insertions and deletions).

It may be possible to improve the O(4K) factor in the running time of the operations of our data
structure, since there is redundant work in the current QUERY and INSERT operations (although we
cannot hope to completely avoid the exponential in K). For instance, observe that if s and t are k-
reachable then any s′ ⊂ s and t′ ⊂ t are also reachable. Also, we might not need to check O(n2) pairs
from a set of n supervertices if all are reachable.
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